If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4t^2+36t=0
a = 4; b = 36; c = 0;
Δ = b2-4ac
Δ = 362-4·4·0
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-36}{2*4}=\frac{-72}{8} =-9 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+36}{2*4}=\frac{0}{8} =0 $
| 9x+3=15x-4 | | 2+9(2x+9)=-3-2(9x-4) | | 2.5xY=48 | | 5-4x=7x+3 | | 2.5xX=48 | | t/16=3 | | 216=170-v | | 260=-u+131 | | 2y+9=129 | | m/10=18/15 | | 12x+24=3x-2 | | 30z=150 | | 30-w=4w | | 7x/10+6=41 | | 2(4-3x)=3(4x+3) | | 0.3=d11 | | 6(x+3)=-3(x-4)=24 | | 12=a/14 | | 1/2x+5=8x | | 11=t/13 | | 6(x+3)=3(x-4)=24 | | x-0.2x=1500 | | 4x+7=10=3x+3 | | 160-n+n=180 | | (2y+1)=(4y-5) | | 2x+18+x=51 | | 180=36n+n | | (f+2)=(2f-5) | | 180=114-n+n | | 180=114÷n+n | | 90=9n+n | | 3p+7=5-19 |